i

ADVALGO QUICK EXAM SUMMARY

-«

GABRIEL ROVESTI

Disclaimer

The following file is made to have all of the exercises of the exam solved and each category present
here.

1 SUMMARY

2

3

EXAM = FIFSTPAIT c.e ettt ee et e e s e e e e e e ee e ean e eans 3
2.1 Complexities and NP-Hard problemsc.iu ittt ee e e eesaeensaneanens 3
22 It B A ¥= (o] 14 0 0 4 1< T PP PU TP TRPRPRN 3
2.1.2 NP-Hard Problems.. .. .ottt ettt 3
2.2 (€1 ¢=T o] Eo R oG] (o1 F 1T F TSR PPRTRIN 4
221 BellmMan-FOrd ...ttt ettt et et et e e e 4
A A B 1|1] (- I PP PP PR PPN 4
2.2.3 Kruskaland Prim ..ottt et e et e e 5
EXamM —SECONA PAIt ...ciiiiiiiiiiii ittt et s e e e re e e s e raa s eanaes 7
3.1 HOW t0 dO reUCTIONS eueiiiiiiiiiiiiiiiciii ettt et et et st e e e taae e eanes 7
3.1.1 CoMPLEte EXAMIPLE ettt et e e et et st s e e e eaee e e e e e e e 8
3.1.2 Known reductions seen inside the COUISEot 9
3.2 How to do approximation algorithmSttt e e e ees 10
3.2.1 Known approximation algorithms SEEN iN COUISEciuiiuiiiiiiiiiiiiiiiiieie e ee e e e 11

3.3 Chernoff Bounds and High Probability ..o 12

2 EXAM-FIRST PART

2.1 COMPLEXITIES AND NP-HARD PROBLEMS

2.1.1 Algorithms

DFS/BFS=0(n+m)
= Also called in exams “Graph connectivity/Connected components”
Minimum Spanning Tree (MST)
» Prim’s algorithm = 0(m * n)
e Prim with heaps = O(mlog(n))
= Kruskal’s algorithm = O(m * n)
e Kruskal with Union-Find = 0 (mlog(n)) = best algorithm
Single-source shortest paths (SSSP)
= Dijkstra’s algorithm = 0 (m * n)
e Dijkstra with heaps= 0(m * n(log(n)) = best algorithm
= Bellman-Ford’s algorithm = 0(m * n)
All-pairs shortest paths (APSP)
* Bellman-Ford with dynamic programming = 0(n3 log(n))
* Floyd-Warshall=0(n?)
Maximum flow
» Ford-Fulkerson=0(m|f*|)

2.1.2 NP-Hard Problems

NP-Hard problems (seen in the course)

O O 0O O O O O

TSP - Traveling Salesperson Problem

Metric TSP

Maximum Independent Set (or Maximum independent set)
Vertex cover (or Minimum Vertex Cover)

3SAT

Hamiltonian circuit

Cligue (or Maximum Clique)

Set Cover

2.2 GRAPHS EXERCISES

2.2.1 Bellman-Ford

Question 1 (4 points) Consider the following directed, weighted graph, represented by an adjacency
matrix where each numerical value represents the weight of the corresponding edge, and where the
symbol ‘—’ indicates the absence of the edge between the corresponding vertices.

|[s a b ¢ 4
9 4 - -
I
- 4

2

20 R ©»
'
'
'

(a) Draw the graph.

(b) Run the Bellman-Ford algorithm on this graph, using vertex s as the source. You are to return
the trace of the execution, i.e. a table with rows indexed by vertices and columns indexed by
iteration indexes (starting from 0) where each entry contains the estimated distance between
s and that vertex at that iteration.

Solution:

(a)

0| | =D
[SLR SN) B] R | I
(SIS el o] | R

8|8 x| -

88|88 |=(=

oo e|w

2.2.2 Dijkstra

2.a—c:l,a—b:2,a—-d:3,a—f:4,a—e:5.

2.2.3 Kruskal and Prim

Question 1 (6 points) Consider the following weighted graph, represented by an adjacency matrix
where each numerical value represents the weight of the corresponding edge, and where the symbol
‘—" indicates the absence of the edge between the corresponding nodes.

(a) Draw the graph.

(b) List the edges of the minimum spanning tree in the order they are selected by Kruskal’s algo-

rithm.

(¢) List the edges of the minimum spanning tree in the order they are selected by Prim’s algorithm

starting at node e.

Solution:

(a)

(b) (a,¢). (e, d), (a,b), (e, f), (b,0).
(©) (e.d), (b,), (a.b), (a,). (e,])-

a b ¢ d e f
al|l- 3 7T - 1 5
b - 6 8 - -
c - 2 9 -
d - - -
e - 4
f

Domanda 2 (6 punti) Si consideri il seguente grafo completo pesato, rappresentato tramite una
matrice di adiacenza dove ogni valore numerico rappresenta il peso del lato corrispondente.

| a b ¢ d e
al- 2 1 3 4
b -3 5 6
c - 4 5
d - 7

1. Disegnare il grafo.

2. Elencare i lati del minimum spanning tree nell’ordine in cui sono selezionati dall’algoritmo di
Prim a partire dal nodo a.

3. Siccome i pesi dei lati soddisfano la disnguaglianza triangolare, si puo applicare I'algoritmo di
2-approssimazione APPROX_T_TSP visto in classe per il TSP. Considerando i nodi ordinati
secondo l'ordine alfabetico, fornire I'output dell’algoritmo APPROX_T_TSP quando eseguito
su questo grafo.

Soluzione:

2. (a,c¢), (a,b), (a,d).(a,e).

3. Considerando i nodi ordinati secondo l'ordine alfabetico, I'algoritmo APPROX_T_TSP esegue
I'algoritmo di Prim a partire dal nodo a. Un possibile output ¢ quindi a,¢,b,d, e, a.

3 EXAM-SECOND PART

3.1 How TO DO REDUCTIONS

Y <, X

Here's a general structure you can follow when solving a reduction problem to prove that a problem X
is NP-hard by reducing a known NP-hard problem Y to X:

1. Introduction
- Goal: To prove that problem X is NP-hard by reducing a known NP-hard problem Y to X.
2. Problem Definition

- Define problem Y (the known NP-hard problem)
o Specify the input format and the desired output

- Define problem X (the problem you want to prove is NP-hard)
o Specify the input format and the desired output

3. Reduction process

- Given aninstance of problem Y, construct an instance of problem X

- Specify the steps to transform an instance of Y into an instance of X

- Explain how the input of Y is used to create the input of X

- Define any additional variables or structures needed for the reduction

4. Correctness proof

- Ifthereis a solution to the instance of Y

o thenthere is a corresponding solution to the constructed instance of X
- Ifthere is a solution to the constructed instance of X

o thenthereis a corresponding solution to the instance of Y

5. Polynomial-time reduction

- Argue that the reduction can be performed in polynomial time, in terms of size and time

3.1.1 Complete Example

Ham <, TSP
Input:

- ForHam, the inputis a graph G = (V,E), where V is the set of vertices and E is the set of
edges.

- For TSP, the input is a complete weighted graph G' = (V', E’, w), where V' is the set of vertices,
E'is the set of edges, and w is a weight function assigning a non-negative weight to each edge.

Output:

- For Ham, the outputis "Yes" if the graph G contains a Hamiltonian cycle (a cycle that visits
each vertex exactly once) and "No" otherwise.
- ForTSP, the output is the minimum total weight of a Hamiltonian cycle in the graph G'.

Reduction:

Given an instance of Ham (a graph &), we construct an instance of TSP (a complete weighted graph
G') as follows:

1.SetV’' =V, so the vertices of G’ are the same as the vertices of G.
2. For each edge (u,v) € E, set the weightw(u,v) = 1inG'.
3. For each pair of vertices (u, v) & E, set the weight w(u,v) = 2inG'.

Now, we have an instance of TSP (the complete weighted graph G'). We claim that G has a
Hamiltonian cycle if and only if the minimum total weight of a Hamiltonian cycle in G’ is exactly |V|.

To show the reduction is correct, we prove the following:
1. If G has a Hamiltonian cycle, then there exists a Hamiltonian cycle in G’ with a total weight of |V|.

- Suppose G has a Hamiltonian cycle. This means there is a cycle that visits each vertex exactly
once using only the edgesin E.

- Inthe constructed graph G’, the edges from the Hamiltonian cycle in G have a weight of 1, and
there are |V| such edges.

- Thus, the total weight of this Hamiltonian cycle in G’ is exactly |V].

2. If there exists a Hamiltonian cycle in G' with a total weight of |V/|, then G has a Hamiltonian cycle.

- Suppose there is a Hamiltonian cycle in G’ with a total weight of |V|.

- Since the minimum weight of any edge in G’ is 1, the Hamiltonian cycle in G' must use only
edges with weight 1.

- By construction, the edges with weight 1 in G’ correspond to the edges in G.

- Therefore, the Hamiltonian cycle in G’ corresponds to a Hamiltonian cycle in G.

This reduction shows that if we can solve TSP efficiently, we can also solve Ham efficiently. We
construct an instance of TSP from an instance of Ham, solve TSP, and then interpret the solution to
determine if the original graph G has a Hamiltonian cycle.

3.1.2 Known reductions seen inside the course

These are collected here just to clearly see them:

- 3S8AT <, IndependentSet

- Clique <, Independent Set

- Vertex Cover <, Independent Set
- Ham <, TSP

- TSP < Metric TSP

- Vertex Cover <, Set Cover

3.2 How TO DO APPROXIMATION ALGORITHMS

Definition: Let Il be an optimization problem and let A be an algorithm for Il that returns, Vi €
I, A (i) € §; (in other words, the choice the algorithm makes). We say that A; has an approximation
factor of p(n) if Vi € I such that |i|] = n we have (for each one, the concrete translation in problems):

1. minimization problem (basically, an explicit lower-bound of the optimal solution)
c(An(®)
c(s*(i))

Greedy
OPT

<p(m)

< p(n)
Here I call V the choice of the algorithm, say it’s Vertex Cover.

V']

So, in a logic of a X-approximation algorithm T

<X:

a) Upper bound to the cost of V' (which is our solution, greedy choice made by us)

e The upper bound means instances for which the algorithm does not improve
e |tisthe worst-case performance of the algorithm compared to the optimal solution

b) Lower bound to the cost of V* (which is the optimal solution, selected by the algorithm)

e The lower bound means avalue the algorithm is guaranteed to be greater or equal to, hence
the smallest possible cost case (base case)

e Represents the best-case performance of the algorithm compared to the optimal solution

2. maximization problem (basically, an explicit upper-bound of the optimal solution)
c(s*(D)
c(An(®)

OPT
Greedy

<pn)

<pm)

V*
VI < x:

So, in a logic of a X-approximation algorithm "

a) Upper bound to the cost of V* (which is the optimal solution, selected by the algorithm)
e Same observations as before

b) Lower bound to the cost of V' (which is our heuristic solution, greedy choice made by us)
e Same observations as before

Most common case is the 2-approximation algorithm. What does this even mean? It’s an algorithm
which returns a solution whose cost is at most twice the optimal. Specifically:

- it gives solutions that never cost more than twice that of optimal if it is a minimization problem
- ornever provide less than half the optimal value if it is a maximization problem

So, it’s something in line of (given the structure above):
|V'| < choice < |V*| for minimization problems
|[V*| < choice < |V'| for maximization problems
Sometimes, you will be asked to show an approximation is tight:

- thatdepends on your definition of approximation ratio

- normally the approximation ratio is defined as the worst ratio between optimal solution and
the one produced by your algorithm

- ifthisisthe case, all you need to show that the ratio is tight is come up with one bad example,
which shows it works for all sizes

Specifically, if you have for instance: show the ratio is tight for a 2-approx algorithm, it means, taking
forinstance Vertex Cover that the ratio is exactly 2.
V'l
=2
V-

3.2.1 Known approximation algorithms seen in course

These are collected here just to clearly see them (note: they are all minimization problems):

- 2-approximation algorithm for Vertex Cover
o il <2
(v
= |V'| < choice < 2|V*|
- 2-approximation algorithm for Metric TSP (where H = tour)
w|H|
wW|H*| —
» w(H) < choice < 2w(H")
- 1.5 approximation algorithm for Metric TSP
< 15=2
[H'| 2
* w(H) < choice < %W(H*)

- logarithmic algorithm (log,(n) + 1) for Set Cover

O

o % <log,(n) +1

3.3 CHERNOFF BOUNDS AND HIGH PROBABILITY

probability applied n times, so Pr(X; = 1) = i becomes)i\, E[X;] = —

5. Simplify the expression:

Consider the following footprint exercise — as he will say multiple times, he will give you the specific
Chernoff bound:

Let Xy, Xs,..., X, be independent indicator random variables such that Pr(X; = 1) = 1/(4e). Let
X =37 ,X; and p = E[X]. By applying the following Chernoff bound, which holds for every
>0,
e #
Pr(X > (1+9 —
(06> (140 < (1557753)
prove that
1

To apply the Chernoff bound, we get the value which has to be greater from —the bound - as the
(1 4+ &)u, since this is the bound.

Then, we apply to each variable the Chernoff bound, so to have the expected value be the same

n
4e’

We have to set up the target bound, and now you will see precisely why § gets that value:

2. Set up the target bound: We want to find 4 such that:
n
p (X > —)
! 2

matches the Chernoff bound. So, we equate:

n
Substituting p = {:
i n n
S (148 —=
2 (1+9) de
3. Solve for §: n n
Z=(1x8 - —
5 =95
Dividing both sides by -:
2e
TP =144
Therefore:
d=2e—1
Then, see all of these passages:
Substituting § = 2¢ — 1 and p = %
e?e—! i Using the Chernoff bound formula:
Pr(X 1+2e—1 T ’
F> (2= < (G)

o9 ()"

Pr(X > (140)u) < (

¢

)

(L1494

6. Further simplify: Recognize that g:;t =

() = o)

Simplify further:

() - ()

Thus, we have:

Pr(X >n/2) < (

	2 Exam – First Part
	2.1 Complexities and NP-Hard problems
	2.1.1 Algorithms
	2.1.2 NP-Hard Problems

	2.2 Graphs Exercises
	2.2.1 Bellman-Ford
	2.2.2 Dijkstra
	2.2.3 Kruskal and Prim

	3 Exam – Second Part
	3.1 How to do reductions
	3.1.1 Complete Example
	3.1.2 Known reductions seen inside the course

	3.2 How to do approximation algorithms
	3.2.1 Known approximation algorithms seen in course

	3.3 Chernoff Bounds and High Probability

