

ADVALGO QUICK EXAM SUMMARY

GABRIEL ROVESTI

Disclaimer

The following file is made to have all of the exercises of the exam solved and each category present
here.

1 SUMMARY

2 Exam – First Part ... 3

2.1 Complexities and NP-Hard problems .. 3

2.1.1 Algorithms .. 3

2.1.2 NP-Hard Problems.. 3

2.2 Graphs Exercises .. 4

2.2.1 Bellman-Ford ... 4

2.2.2 Dijkstra .. 4

2.2.3 Kruskal and Prim .. 5

3 Exam – Second Part .. 7

3.1 How to do reductions ... 7

3.1.1 Complete Example ... 8

3.1.2 Known reductions seen inside the course .. 9

3.2 How to do approximation algorithms ... 10

3.2.1 Known approximation algorithms seen in course ... 11

3.3 Chernoff Bounds and High Probability ... 12

2 EXAM – FIRST PART

2.1 COMPLEXITIES AND NP-HARD PROBLEMS

2.1.1 Algorithms

o DFS/BFS = 𝑂(𝑛 + 𝑚)
▪ Also called in exams “Graph connectivity/Connected components”

o Minimum Spanning Tree (MST)
▪ Prim’s algorithm = 𝑂(𝑚 ∗ 𝑛)

• Prim with heaps = 𝑂(𝑚 log(𝑛))
▪ Kruskal’s algorithm = 𝑂(𝑚 ∗ 𝑛)

• Kruskal with Union-Find = 𝑂(𝑚 log(𝑛)) = best algorithm
o Single-source shortest paths (SSSP)

▪ Dijkstra’s algorithm = 𝑂(𝑚 ∗ 𝑛)
• Dijkstra with heaps= 𝑂(𝑚 ∗ 𝑛(log(𝑛)) = best algorithm

▪ Bellman-Ford’s algorithm = 𝑂(𝑚 ∗ 𝑛)
o All-pairs shortest paths (APSP)

▪ Bellman-Ford with dynamic programming = 𝑂(𝑛3 log(𝑛))
▪ Floyd-Warshall = 𝑂(𝑛3)

o Maximum flow
▪ Ford-Fulkerson = 𝑂(𝑚|𝑓∗|)

2.1.2 NP-Hard Problems

- NP-Hard problems (seen in the course)

o TSP – Traveling Salesperson Problem
o Metric TSP
o Maximum Independent Set (or Maximum independent set)
o Vertex cover (or Minimum Vertex Cover)
o 3SAT
o Hamiltonian circuit
o Clique (or Maximum Clique)
o Set Cover

2.2 GRAPHS EXERCISES

2.2.1 Bellman-Ford

2.2.2 Dijkstra

2.2.3 Kruskal and Prim

3 EXAM – SECOND PART

3.1 HOW TO DO REDUCTIONS

𝑌 ≤𝑝 𝑋

Here's a general structure you can follow when solving a reduction problem to prove that a problem 𝑋
is NP-hard by reducing a known NP-hard problem 𝑌 to 𝑋:

1. Introduction

- Goal: To prove that problem 𝑋 is NP-hard by reducing a known NP-hard problem 𝑌 to 𝑋.

2. Problem Definition

- Define problem 𝑌 (the known NP-hard problem)
o Specify the input format and the desired output

- Define problem 𝑋 (the problem you want to prove is NP-hard)
o Specify the input format and the desired output

3. Reduction process

- Given an instance of problem 𝑌, construct an instance of problem 𝑋
- Specify the steps to transform an instance of 𝑌 into an instance of 𝑋
- Explain how the input of 𝑌 is used to create the input of 𝑋
- Define any additional variables or structures needed for the reduction

4. Correctness proof

- If there is a solution to the instance of 𝑌
o then there is a corresponding solution to the constructed instance of 𝑋

- If there is a solution to the constructed instance of 𝑋
o then there is a corresponding solution to the instance of 𝑌

5. Polynomial-time reduction

- Argue that the reduction can be performed in polynomial time, in terms of size and time

3.1.1 Complete Example

𝐻𝑎𝑚 ≤𝑝 𝑇𝑆𝑃

Input:

- For Ham, the input is a graph 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of vertices and 𝐸 is the set of
edges.

- For TSP, the input is a complete weighted graph 𝐺′ = (𝑉′, 𝐸′, 𝑤), where 𝑉′ is the set of vertices,
E' is the set of edges, and w is a weight function assigning a non-negative weight to each edge.

Output:

- For 𝐻𝑎𝑚, the output is "Yes" if the graph G contains a Hamiltonian cycle (a cycle that visits
each vertex exactly once) and "No" otherwise.

- For 𝑇𝑆𝑃, the output is the minimum total weight of a Hamiltonian cycle in the graph G'.

Reduction:

Given an instance of 𝐻𝑎𝑚 (a graph 𝐺), we construct an instance of 𝑇𝑆𝑃 (a complete weighted graph
𝐺′) as follows:

1. Set 𝑉′ = 𝑉, so the vertices of 𝐺′ are the same as the vertices of 𝐺.

2. For each edge (𝑢, 𝑣) ∈ 𝐸, set the weight 𝑤(𝑢, 𝑣) = 1 in 𝐺′.

3. For each pair of vertices (𝑢, 𝑣) ∉ 𝐸, set the weight 𝑤(𝑢, 𝑣) = 2 in 𝐺′.

Now, we have an instance of TSP (the complete weighted graph 𝐺′). We claim that 𝐺 has a
Hamiltonian cycle if and only if the minimum total weight of a Hamiltonian cycle in 𝐺′ is exactly |𝑉|.

To show the reduction is correct, we prove the following:

1. If 𝐺 has a Hamiltonian cycle, then there exists a Hamiltonian cycle in 𝐺′ with a total weight of |V|.

- Suppose 𝐺 has a Hamiltonian cycle. This means there is a cycle that visits each vertex exactly
once using only the edges in 𝐸.

- In the constructed graph 𝐺′, the edges from the Hamiltonian cycle in 𝐺 have a weight of 1, and
there are |𝑉| such edges.

- Thus, the total weight of this Hamiltonian cycle in 𝐺′ is exactly |𝑉|.

2. If there exists a Hamiltonian cycle in 𝐺′ with a total weight of |𝑉|, then G has a Hamiltonian cycle.

- Suppose there is a Hamiltonian cycle in 𝐺′ with a total weight of |𝑉|.
- Since the minimum weight of any edge in 𝐺′ is 1, the Hamiltonian cycle in G' must use only

edges with weight 1.
- By construction, the edges with weight 1 in 𝐺′ correspond to the edges in 𝐺.
- Therefore, the Hamiltonian cycle in 𝐺′ corresponds to a Hamiltonian cycle in 𝐺.

This reduction shows that if we can solve 𝑇𝑆𝑃 efficiently, we can also solve 𝐻𝑎𝑚 efficiently. We
construct an instance of 𝑇𝑆𝑃 from an instance of Ham, solve 𝑇𝑆𝑃, and then interpret the solution to
determine if the original graph 𝐺 has a Hamiltonian cycle.

3.1.2 Known reductions seen inside the course

These are collected here just to clearly see them:

- 3𝑆𝐴𝑇 ≤𝑝 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑆𝑒𝑡
- 𝐶𝑙𝑖𝑞𝑢𝑒 ≤𝑝 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑆𝑒𝑡
- 𝑉𝑒𝑟𝑡𝑒𝑥 𝐶𝑜𝑣𝑒𝑟 ≤𝑝 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑆𝑒𝑡
- 𝐻𝑎𝑚 ≤𝑝 𝑇𝑆𝑃
- 𝑇𝑆𝑃 ≤ 𝑀𝑒𝑡𝑟𝑖𝑐 𝑇𝑆𝑃
- 𝑉𝑒𝑟𝑡𝑒𝑥 𝐶𝑜𝑣𝑒𝑟 ≤𝑝 𝑆𝑒𝑡 𝐶𝑜𝑣𝑒𝑟

3.2 HOW TO DO APPROXIMATION ALGORITHMS

Definition: Let Π be an optimization problem and let 𝐴Π be an algorithm for Π that returns, ∀𝑖 ∈

𝐼, 𝐴Π(𝑖) ∈ 𝑆𝑖 (in other words, the choice the algorithm makes). We say that 𝐴Π has an approximation
factor of 𝜌(𝑛) if ∀𝑖 ∈ 𝐼 such that |𝑖| = 𝑛 we have (for each one, the concrete translation in problems):

1. minimization problem (basically, an explicit lower-bound of the optimal solution)

𝑐(𝐴Π(𝑖))

𝑐(𝑠∗(𝑖))
≤ 𝜌(𝑛)

𝐺𝑟𝑒𝑒𝑑𝑦

𝑂𝑃𝑇
≤ 𝜌(𝑛)

Here I call 𝑉 the choice of the algorithm, say it’s Vertex Cover.

So, in a logic of a X-approximation algorithm |𝑉
′|

|𝑉∗|
≤ 𝑋:

a) Upper bound to the cost of 𝑉′ (which is our solution, greedy choice made by us)

• The upper bound means instances for which the algorithm does not improve
• It is the worst-case performance of the algorithm compared to the optimal solution

b) Lower bound to the cost of 𝑉∗ (which is the optimal solution, selected by the algorithm)

• The lower bound means a value the algorithm is guaranteed to be greater or equal to, hence
the smallest possible cost case (base case)

• Represents the best-case performance of the algorithm compared to the optimal solution

2. maximization problem (basically, an explicit upper-bound of the optimal solution)

𝑐(𝑠∗(𝑖))

𝑐(𝐴Π(𝑖))
≤ 𝜌(𝑛)

𝑂𝑃𝑇

𝐺𝑟𝑒𝑒𝑑𝑦
≤ 𝜌(𝑛)

So, in a logic of a X-approximation algorithm |𝑉
∗|

|𝑉′|
≤ 𝑋:

a) Upper bound to the cost of 𝑉∗ (which is the optimal solution, selected by the algorithm)

• Same observations as before

b) Lower bound to the cost of 𝑉′ (which is our heuristic solution, greedy choice made by us)

• Same observations as before

Most common case is the 2-approximation algorithm. What does this even mean? It’s an algorithm
which returns a solution whose cost is at most twice the optimal. Specifically:

- it gives solutions that never cost more than twice that of optimal if it is a minimization problem
- or never provide less than half the optimal value if it is a maximization problem

So, it’s something in line of (given the structure above):

|𝑉′| ≤ 𝑐ℎ𝑜𝑖𝑐𝑒 ≤ |𝑉∗| 𝑓𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠

|𝑉∗| ≤ 𝑐ℎ𝑜𝑖𝑐𝑒 ≤ |𝑉′| 𝑓𝑜𝑟 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠

Sometimes, you will be asked to show an approximation is tight:

- that depends on your definition of approximation ratio
- normally the approximation ratio is defined as the worst ratio between optimal solution and

the one produced by your algorithm
- if this is the case, all you need to show that the ratio is tight is come up with one bad example,

which shows it works for all sizes

Specifically, if you have for instance: show the ratio is tight for a 2-approx algorithm, it means, taking
for instance Vertex Cover that the ratio is exactly 2.

|𝑉′|

|𝑉∗|
= 2

3.2.1 Known approximation algorithms seen in course

These are collected here just to clearly see them (note: they are all minimization problems):

- 2-approximation algorithm for Vertex Cover

o
|𝑉′|

|𝑉∗|
≤ 2

▪ |𝑉′| ≤ 𝑐ℎ𝑜𝑖𝑐𝑒 ≤ 2|𝑉∗|
- 2-approximation algorithm for Metric TSP (where 𝐻 = 𝑡𝑜𝑢𝑟)

o
𝑤|𝐻|

𝑤|𝐻∗|
≤ 2

▪ 𝑤(𝐻) ≤ 𝑐ℎ𝑜𝑖𝑐𝑒 ≤ 2𝑤(𝐻∗)
- 1.5 approximation algorithm for Metric TSP

o
|𝐻∗|

|𝐻′|
≤ 1.5 =

3

2

▪ 𝑤(𝐻) ≤ 𝑐ℎ𝑜𝑖𝑐𝑒 ≤
3

2
𝑤(𝐻∗)

- logarithmic algorithm (log2(𝑛) + 1) for Set Cover

o
|𝑆∗|

|𝑆′|
≤ log2(𝑛) + 1

3.3 CHERNOFF BOUNDS AND HIGH PROBABILITY

Consider the following footprint exercise – as he will say multiple times, he will give you the specific
Chernoff bound:

To apply the Chernoff bound, we get the value which has to be greater from – the bound – as the
(1 + 𝛿)𝜇, since this is the bound.

Then, we apply to each variable the Chernoff bound, so to have the expected value be the same

probability applied 𝑛 times, so Pr(𝑋𝑖 = 1) =
1

4𝑒
 becomes ∑ 𝐸[𝑋𝑖] =

𝑛

4𝑒
𝑛
𝑖=1 .

We have to set up the target bound, and now you will see precisely why 𝛿 gets that value:

Then, see all of these passages:

	2 Exam – First Part
	2.1 Complexities and NP-Hard problems
	2.1.1 Algorithms
	2.1.2 NP-Hard Problems

	2.2 Graphs Exercises
	2.2.1 Bellman-Ford
	2.2.2 Dijkstra
	2.2.3 Kruskal and Prim

	3 Exam – Second Part
	3.1 How to do reductions
	3.1.1 Complete Example
	3.1.2 Known reductions seen inside the course

	3.2 How to do approximation algorithms
	3.2.1 Known approximation algorithms seen in course

	3.3 Chernoff Bounds and High Probability

